Neural constraints on eye motion in human eye-head saccades.

نویسندگان

  • H Misslisch
  • D Tweed
  • T Vilis
چکیده

We examined two ways in which the neural control system for eye-head saccades constrains the motion of the eye in the head. The first constraint involves Listing's law, which holds ocular torsion at zero during head-fixed saccades. During eye-head saccades, does this law govern the eye's motion in space or in the head? Our subjects, instructed to saccade between space-fixed targets with the head held still in different positions, systematically violated Listing's law of the eye in space in a way that approximately, but not perfectly, preserved Listing's law of the eye in head. This finding implies that the brain does not compute desired eye position based on the desired gaze direction alone but also considers head position. The second constraint we studied was saturation, the process where desired-eye-position commands in the brain are "clipped" to keep them within an effective oculomotor range (EOMR), which is smaller than the mechanical range of eye motion. We studied the adaptability of the EOMR by asking subjects to make head-only saccades. As predicted by current eye-head models, subjects failed to hold their eyes still in their orbits. Unexpectedly, though, the range of eye-in-head motion in the horizontal-vertical plane was on average 31% smaller in area than during normal eye-head saccades, suggesting that the EOMR had been reduced by effort of will. Larger reductions were possible with altered visual input: when subjects donned pinhole glasses, the EOMR immediately shrank by 80%. But even with its reduced EOMR, the eye still moved into the "blind" region beyond the pinhole aperture during eye-head saccades. Then, as the head movement brought the saccade target toward the pinhole, the eyes reversed their motion, anticipating or roughly matching the target's motion even though it was still outside the pinhole and therefore invisible. This finding shows that the backward rotation of the eye is timed by internal computations, not by vision. When subjects wore slit glasses, their EOMRs shrank mostly in the direction perpendicular to the slit, showing that altered vision can change the shape as well as the size of the EOMR. A recent, three-dimensional model of eye-head coordination can explain all these findings if we add to it a mechanism for adjusting the EOMR.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P58: Visual Working Memory Performance Based on Saccades in Children with and without Specific Learning Disorder: An Eye-Tracking Study

Some of the previous studies show that children with SLD have deficits in visual processing and working memory. Hence, the aim of this research was to investigate problems of visual working memory based on behavioral neuroscience method, using an eye tracker device. The method of present study was ex-post facto study. The participants included couple of twelve children with SLD (mean age=10.92)...

متن کامل

A kinematic model for 3-D head-free gaze-shifts

Rotations of the line of sight are mainly implemented by coordinated motion of the eyes and head. Here, we propose a model for the kinematics of three-dimensional (3-D) head-unrestrained gaze-shifts. The model was designed to account for major principles in the known behavior, such as gaze accuracy, spatiotemporal coordination of saccades with vestibulo-ocular reflex (VOR), relative eye and hea...

متن کامل

Comparing extraocular motoneuron discharges during head-restrained saccades and head-unrestrained gaze shifts.

Burst neurons (BNs) in the paramedian pontine reticular formation provide the primary input to the extraocular motoneurons (MNs) during head-restrained saccades and combined eye-head gaze shifts. Prior studies have shown that BNs carry eye movement-related signals during saccades and carry head as well as eye movement-related signals during gaze shifts. Therefore MNs receive signals related to ...

متن کامل

Brain stem omnipause neurons and the control of combined eye-head gaze saccades in the alert cat.

When the head is unrestrained, rapid displacements of the visual axis-gaze shifts (eye-re-space)-are made by coordinated movements of the eyes (eye-re-head) and head (head-re-space). To address the problem of the neural control of gaze shifts, we studied and contrasted the discharges of omnipause neurons (OPNs) during a variety of combined eye-head gaze shifts and head-fixed eye saccades execut...

متن کامل

PATHOGENESIS OF ABNORMAL EYE MOVEMENTS AND THEIR VISUAL CONSEQUENCES The modern rationale for the treatment of abnormal eye movements rests on current concepts of the neurobiology of ocular motility

EYE MOVEMENTS AND THEIR VISUAL CONSEQUENCES The modern rationale for the treatment of abnormal eye movements rests on current concepts of the neurobiology of ocular motility and vision. In order to see clearly the details in our visual world, images must be held quite still upon the retina, especially the central, foveal part, which has the highest density of photoreceptors. In order to read, w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 79 2  شماره 

صفحات  -

تاریخ انتشار 1998